# Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping

Fu H, Gong M, Wang C, Batmanghelich K, Zhang K, Tao D

CVPR 2019

CV&DL for Autonomous Driving Erkam Uyanik







## **Outline**

- 1. Problem Definition
- 2. Concepts
- 3. State of the Art
- 4. Proposed Method
- 5. Experiments
- 6. Conclusion



## **Problem Definition: Domain Mapping**

- Domain mapping targets translating an image from one domain to another
- $\chi, y$  domains
- $X \in \mathcal{X}, Y \in \mathcal{Y}$  random variables
- $x \in X, y \in Y$  samples
- Goal: learn a function  $G_{XY}$  to transform domain  ${\mathcal X}$  to  ${\mathcal Y}$





## **Problem Definition: Domain Mapping**

- Supervised Domain Mapping
  - significant progress from variety of literature
  - Paired data collection can be time consuming and expensive.
- Unsupervised Domain Mapping
  - Finding the optimal  $G_{XY}$  without paired data is an ill posed problem
    - > no unique solution
  - Appropriate constraints are needed





GANs are popular for domain adaptation and similar tasks

## **Concept: Generative Adversarial Networks**

 GANs learn two networks, a generator and a discriminator, in a zero-sum game setup.

• **Adversarial constraint** enforces generated images to be indistinguishable from real images.

$$\mathcal{L}_{gan} = \mathbb{E}_{y \sim P_Y} [\log D_Y(y)] + \mathbb{E}_{x \sim P_X} [\log(1 - D_Y(G_{XY}(x)))].$$

•  $D_Y$  and  $G_{XY}$  simultaneously optimize each other



# State of the Art: CycleGAN

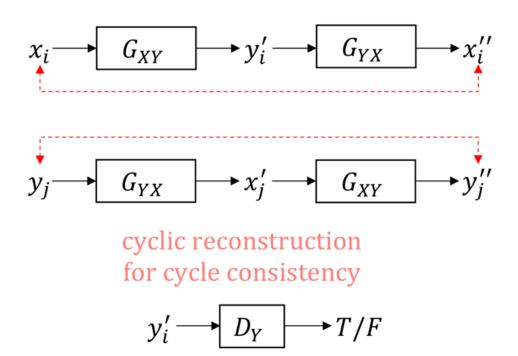
- Cycle consistency assumption
- a mapping  $G_{XY}$  and its inverse  $G_{YX}$  should be **bijections**

$$\mathcal{L}_{cyc} = \mathbb{E}_{x \sim P_X} [\|G_{YX}(G_{XY}(x)) - x\|_1] + \mathbb{E}_{y \sim P_Y} [\|G_{XY}(G_{YX}(y)) - y\|_1].$$

- $x \approx G_{YX}(G_{XY}(x))$
- $y \approx G_{XY}(G_{YX}(y))$
- **two-sided**:  $G_{XY}$  and  $G_{YX}$  needs to be jointly learned
- CycleGAN (Zhu et al. 2017), DiscoGAN (Kim et al. 2017), DualGAN (Yi et al. 2017)



# State of the Art: CycleGAN





## State of the Art: DistanceGAN

• Assumption: Distance between two examples  $x_i$  and  $x_j$  in domain  $\mathcal{X}$  should be preserved after mapping to domain  $\mathcal{Y}$ .

$$\mathcal{L}_{dis} = \mathbb{E}_{x_i, x_j \sim P_X} [|\phi(x_i, x_j) - \psi(x_i, x_j)|],$$

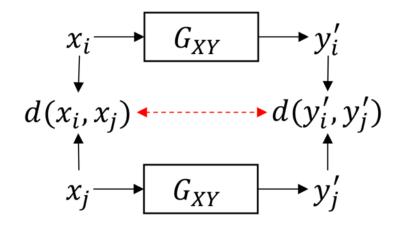
$$\phi(x_i, x_j) = \frac{1}{\sigma_X} (\|x_i - x_j\|_1 - \mu_X),$$

$$\psi(x_i, x_j) = \frac{1}{\sigma_Y} (\|G_{XY}(x_i) - G_{XY}(x_j)\|_1 - \mu_Y),$$

- $\,\mu$  and  $\sigma$  are mean and stddev of distances of all possible pairs within domain
- ❖ Benaim et al. 2017



#### State of the Art: DistanceGAN



preserving  $d(\cdot)$  for distance consistency

$$y_i' \longrightarrow D_Y \longrightarrow T/F$$

$$y_j' \longrightarrow D_Y \longrightarrow T/F$$



- Simple geometric transformations do not change semantic structure of the image
  - Transformations without shape deformation
  - The information that distinguishes object classes is preserved

• Example:

90° clockwise rotation







- A geometric transformation  $f(\cdot)$  between input images should be preserved by translators  $G_{XY}$  and  $G_{\widetilde{X}\widetilde{Y}}$
- $\widetilde{\mathcal{X}}$ ,  $\widetilde{\mathcal{Y}}$ : transformed domains by applying  $f(\cdot)$
- Geometry Consistency Constraint

$$\mathcal{L}_{geo} = \mathbb{E}_{x \sim P_X} [\|G_{XY}(x) - f^{-1}(G_{\tilde{X}\tilde{Y}}(f(x)))\|_1] + \mathbb{E}_{x \sim P_X} [\|G_{\tilde{X}\tilde{Y}}(f(x)) - f(G_{XY}(x))\|_1].$$

$$- f(G_{XY}(x)) \approx G_{\tilde{X}\tilde{Y}}(f(x))$$

– "reconstruction loss"

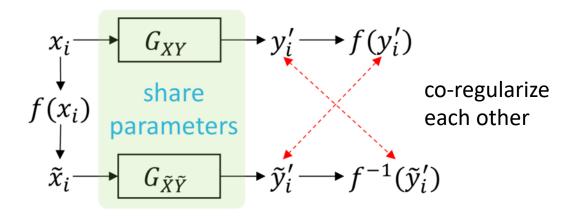


$$\mathcal{L}_{GcGAN} = \mathcal{L}_{gan}(G_{XY}, D_Y, X, Y) + \mathcal{L}_{gan}(G_{\tilde{X}\tilde{Y}}, D_{\tilde{Y}}, X, Y) + \lambda \mathcal{L}_{geo}(G_{XY}, G_{\tilde{X}\tilde{Y}}, X, Y).$$

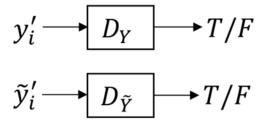
- May need to tune  $\lambda$  for the specific task
- $G_{XY}$  and  $G_{\tilde{X}\tilde{Y}}$  have the same architecture and **share** all the parameters!
- One sided:  $G_{XY}$  can be trained independently from  $G_{YX}$

- 2 geometric transformations:
  - vertical flipping (vf)
  - 90° clockwise rotation (rot)

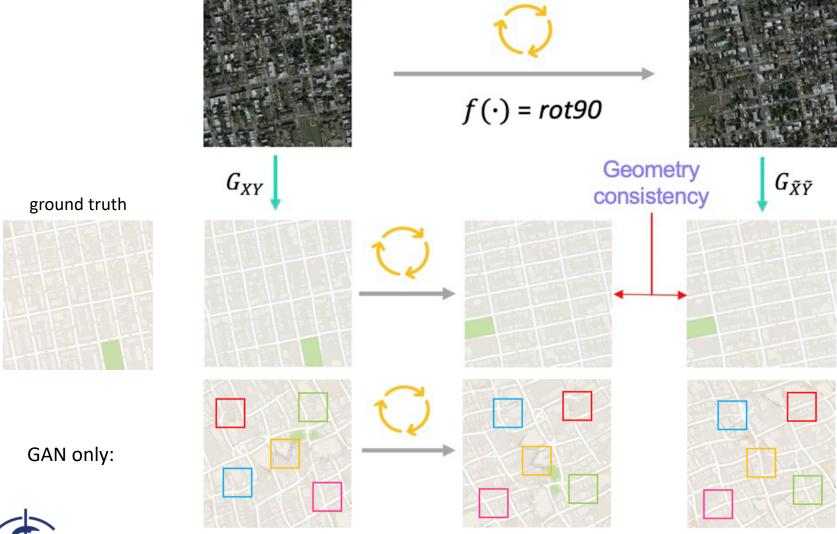




preserving  $f(\cdot)$  for geometry consistency



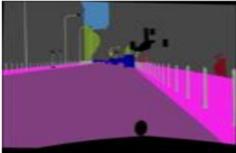




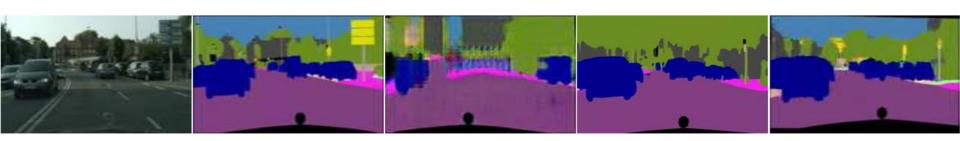


- Cityscapes
  - 3975 image label pairs: 2975 training, 500 validation (used for testing)
  - 19 + 1 label classes
- parsing → image
  - predict labels from generated images (using FCN-8s)
- image → parsing
  - convert generated labels to class-level labels using nearest neighbor search

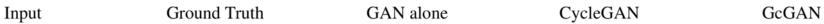














| method                | $image \rightarrow parsing$ |           |          | $parsing \to image$ |           |          |
|-----------------------|-----------------------------|-----------|----------|---------------------|-----------|----------|
| metriod               | pixel acc                   | class acc | mean IoU | pixel acc           | class acc | mean IoU |
| Benchmark Performance |                             |           |          |                     |           |          |
| CoGAN [40]            | 0.45                        | 0.11      | 0.08     | 0.40                | 0.10      | 0.06     |
| BiGAN/ALI [15, 16]    | 0.41                        | 0.13      | 0.07     | 0.19                | 0.06      | 0.02     |
| SimGAN [54]           | 0.47                        | 0.11      | 0.07     | 0.20                | 0.10      | 0.04     |
| CycleGAN (Cycle) [66] | 0.58                        | 0.22      | 0.16     | 0.52                | 0.17      | 0.11     |
| DistanceGAN [5]       | -                           | -         | -        | 0.53                | 0.19      | 0.11     |
| GAN alone (baseline)  | 0.514                       | 0.160     | 0.104    | 0.437               | 0.161     | 0.098    |
| GcGAN-rot             | 0.574                       | 0.234     | 0.170    | 0.551               | 0.197     | 0.129    |
| GcGAN-vf              | 0.576                       | 0.232     | 0.171    | 0.548               | 0.196     | 0.127    |



| method                                                           | $image \rightarrow parsing$ |           |          | parsing $\rightarrow$ image |           |          |  |
|------------------------------------------------------------------|-----------------------------|-----------|----------|-----------------------------|-----------|----------|--|
| method                                                           | pixel acc                   | class acc | mean IoU | pixel acc                   | class acc | mean IoU |  |
| Benchmark Performance                                            |                             |           |          |                             |           |          |  |
| GAN alone (baseline)                                             | 0.514                       | 0.160     | 0.104    | 0.437                       | 0.161     | 0.098    |  |
| GcGAN-rot                                                        | 0.574                       | 0.234     | 0.170    | 0.551                       | 0.197     | 0.129    |  |
| GcGAN-vf                                                         | 0.576                       | 0.232     | 0.171    | 0.548                       | 0.196     | 0.127    |  |
| Ablation Studies (Robustness & Compatibility)                    |                             |           |          |                             |           |          |  |
| $\mathcal{L}_{GcGAN}$ w/o $\mathcal{L}_{geo}$ $(\lambda = 0)$    | 0.486                       | 0.163     | 0.102    | 0.396                       | 0.148     | 0.088    |  |
| $\mathcal{L}_{GcGAN}$ w/o $\mathcal{L}_{gan}(	ilde{X},	ilde{Y})$ | 0.549                       | 0.199     | 0.139    | 0.526                       | 0.184     | 0.111    |  |
| GcGAN-rot-Seperate                                               | 0.575                       | 0.233     | 0.170    | 0.545                       | 0.196     | 0.124    |  |
| GcGAN-Mix-comb                                                   | 0.573                       | 0.229     | 0.168    | 0.545                       | 0.197     | 0.128    |  |
| GcGAN-Mix-rand                                                   | 0.564                       | 0.217     | 0.156    | 0.547                       | 0.192     | 0.123    |  |
| GcGAN- <i>rot</i> + Cycle                                        | 0.587                       | 0.246     | 0.182    | 0.557                       | 0.201     | 0.132    |  |



## **Experiments:** SVHN → MNIST

- SVHN: Street View House Numbers
  - 73257 training images
- MNIST: Handwritten Digits
  - 60000 training images
- classify generated images using pretrained network







**GcGAN** 



# **Experiments:** SVHN → MNIST

| method                           | class acc (%) |  |  |  |  |
|----------------------------------|---------------|--|--|--|--|
| Benchmark Performance            |               |  |  |  |  |
| DistanceGAN (Dist.) [5]          | 26.8          |  |  |  |  |
| CycleGAN (Cycle) [66]            | 26.1          |  |  |  |  |
| Self-Distance [5]                | 25.2          |  |  |  |  |
| GcGAN-rot                        | 32.5          |  |  |  |  |
| GcGAN-vf                         | 33.3          |  |  |  |  |
| Ablation Studies (Compatibility) |               |  |  |  |  |
| Cycle + Dist. [5]                | 18.0          |  |  |  |  |
| GcGAN-rot + Dist.                | 34.0          |  |  |  |  |
| GcGAN-rot + Cycle                | 33.8          |  |  |  |  |
| GcGAN-rot + Dist. + Cycle        | 33.2          |  |  |  |  |



## **Experiments: Google Maps**

- Pairs of aerial photo and maps
- 2194 pairs: 1096 training, 1098 test
- Trained in unsupervised manner
- no quantitative results for map → aerial photo



## **Experiments: Google Maps**

aerial photo → map

$$\delta_1 = 5$$
  $\delta_2 = 10$ 

| method                                        | RMSE  | $acc (\delta_1)$ | $acc (\delta_2)$ |  |  |
|-----------------------------------------------|-------|------------------|------------------|--|--|
| Benchmark Performance                         |       |                  |                  |  |  |
| CycleGAN [66]                                 | 28.15 | 41.8             | 63.7             |  |  |
| GAN alone (baseline)                          | 33.27 | 19.3             | 42.0             |  |  |
| GcGAN-rot                                     | 28.31 | 41.2             | 63.1             |  |  |
| GcGAN-vf                                      | 28.50 | 37.3             | 58.9             |  |  |
| Ablation Studies (Robustness & Compatibility) |       |                  |                  |  |  |
| GcGAN-rot-Separate                            | 30.25 | 40.7             | 60.8             |  |  |
| GcGAN-Mix-comb                                | 27.98 | 42.8             | 64.6             |  |  |
| GcGAN- <i>rot</i> + Cycle                     | 28.21 | 40.6             | 63.5             |  |  |

$$max(|r_i - r'_i|, |g_i - g'_i|, |b_i - b'_i|) < \delta$$



# **Experiments: Qualitative Results**

object transfiguration (Horse → Zebra)







Monet paintings to photos







Input

CycleGAN

GcGAN



# **Experiments: Qualitative Results**

## $Winter \rightarrow Summer$













Input

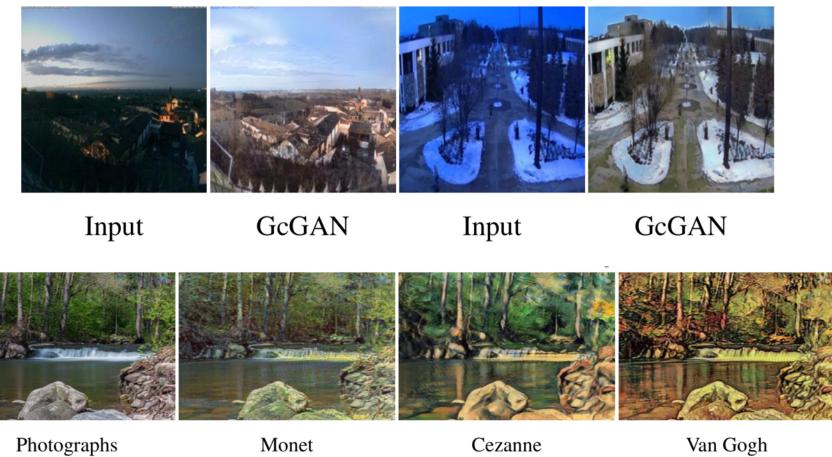
CycleGAN

**GcGAN** 



# **Experiments: Qualitative Results**

 $Night \rightarrow Day$ 





#### Conclusion

- Geometry consistency improves traning of GAN alone
  - solves mode collapse problem
- Reduces semantic distortions
- Competitive performance with state of the art
- Compatible with other constraints

- Requires predefined geometric transformation  $f(\cdot)$
- May need to choose  $f(\cdot)$  and  $\lambda$  according to the task
- No comparison with variations of CycleGAN



# Thank you for listening



#### **Network**

- 256x256 input
- C: Feature channel, K: Kernel size, S: Stride
- SVHN  $\rightarrow$  MNIST
  - smaller network
  - no residual block
- identity mapping loss
  - generator to be near an identity mapping when real examples are provided
  - more conservative for unknown content

| Generator     |                  |     |   |   |  |  |  |
|---------------|------------------|-----|---|---|--|--|--|
| Index         | Layer            | С   | K | S |  |  |  |
| 1             | Conv + ReLU      | 64  | 7 | 1 |  |  |  |
| 2             | Conv + ReLU      | 128 | 3 | 2 |  |  |  |
| 3             | Conv + ReLU      | 256 | 3 | 2 |  |  |  |
| 4             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 5             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 6             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 7             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 8             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 9             | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 10            | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 11            | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 12            | ResBlk + ReLU    | 256 | 3 | 1 |  |  |  |
| 12            | Deconv + ReLU    | 128 | 3 | 2 |  |  |  |
| 13            | Deconv + ReLU    | 64  | 3 | 2 |  |  |  |
| 14            | Conv             | 3   | 7 | 1 |  |  |  |
| 15            | Tanh             | -   | - | - |  |  |  |
| Discriminator |                  |     |   |   |  |  |  |
| 1             | Conv + LeakyReLU | 64  | 4 | 2 |  |  |  |
| 2             | Conv + LeakyReLU | 128 | 4 | 2 |  |  |  |
| 3             | Conv + LeakyReLU | 256 | 4 | 2 |  |  |  |
| 4             | Conv + LeakyReLU | 512 | 4 | 1 |  |  |  |
| 5             | Conv             | 512 | 4 | 1 |  |  |  |
|               |                  |     |   |   |  |  |  |



## **Experiment Details**

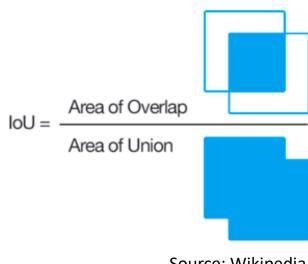
- Cityscapes
  - translators are trained with 128x128 images in unaligned fashion
  - a high-quality translated image should produce qualitative semantic segmentation like real images when feeding it into a scene parser.
- Horse → Zebra
  - ImageNet: wild horse, zebra
  - no parameter sharing
- Summer Winter
  - Images are provided by CycleGAN



## **Metrics**

- **Pixel Accuracy** 
  - Percent of correctly classified pixels
  - Does not work well with imbalanced data!
- Class Accuracy

- mean IoU
  - Intersection over Union
  - average of IoU for all classes
- **RMSE** 
  - root mean square error



Source: Wikipedia